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Propositions expressed in [9] receive further development herein, are refined and sys- 
tematized. Proceeding from the law of interaction between atoms, a conception is pro- 

posed which considers cracks in elastic solids as nontri- 

T vial modes of equilibrium deformation. Crack formation 

is treated as the loss of stability (in the large) of trivial 
equilibrium modes. The formulation of the brittle frac- 
ture criterion in the neighborhood of the end of the crack 

is refined. The carrying capacity of a solid having an 
equilibrium crack is estimated approximately in an 
example of the A, Griffith problem. 

Fig. 1 

77 1. Let T = DU (where D = &r is the atomic 
diameter) be the force of interaction between two 
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parallel rows of atoms, referred to unit length of these rows. The dependence of T on 

the change in spacing between the atom centers 27 is as shown in Fig. 1. One of the 

suitable approximations of this dependence will be 

T = L)o = 2Erle+‘” (1.1) 

where r\, is the value of q corresponding to the maximum value of T (T, = DO,, E 
is Young’s modulus, cr‘, is the rupture yield strength). The relationships 

T, - 2Rq,e-1, (f.4 

(1.3) 
result from (1.1). on whose basis 

-I; 

co 

f 
csdq = 

CT 2a LAS 2 
sgs, = e-+- z1.35-+-- ($4 c. 

where y is the density of the surface energy of the elastic solid. The result (1.4) differs 
from the following known formula 1 oc=D -- r--2 e (4.5) 

by a numerical coefficient. However, (1.5). having been deduced under the assumption 
that the curve d w 01 is approximated by half a sinusoid [l-j, will probably lower y. 

It is understood that other kinds of dependences of CJ on 71 can also be considered, for 
example az2 1 

k (1 +,Imm 
I- ’ 

(1 + 44” 1 
The relationships 

1 
(I + k/~}(l+~)/~ ’ 

?’ = ED 
2m-fk-i 1 

2m (m - 1) (m + k - 1) (1 + kfrn)(mt k-O/R 

(1.6) 

(1.7) 

correspond to this expression, and are more complicated than (1. L?), (1.4) ; this obliges 
giving (1.1) preference over (1.6). The qualitative nature of the subsequent investiga- 

o----J 
0 _- 

I X -------- - 2x0 

-_--- 
0 

t_ 
Fig. 2 

tion does not permit detailed examination of the question which 

of the two approximations presented affords the possibility of a 
closer approach to reality. 

2. Let us examine the following situation (Fig. 2). Let the spa- 
cing between two fixed atoms in space be 2~~ > D f 4qc and 

let there be an atom between them which is subject only to inter- 

action forces from the fixed atoms. Assuming these forces to be 
subject to the law (1. l), it is easy to see that the intermediate 

atom has two equilibrium positions lcs,s = f x*, as well as the 
trivial equiIibrium position x1 = 0,where ~z, x3 are roots of the 
transcendental equation 

5 = ($0 - “/so) th Wsxrt,) (2.1) 
The trivial equilibrium position is unstable. and the two other 

equilibrium positions are stable. Hence, the outer atom, turning 
out to be in interaction with two adjacent atoms according to the 
law of the descending portion of the u - ‘1 curve, will inevitably 
be attracted to one of them, and thereby interact with it according 
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to the law of the ascending portion of the (I - 9 curve. 
It is hence seen that equilibrium of atoms interacting according to the law of the 

descending portion of the d -- q curve, is unstable. If all the atoms of the solid turned 
out to be in such a state, then it would have lost its capacity to resist deformation. More- 
over, it could not resist deformation even if all the atoms of the two adjacent layers 

intersecting the solid turned out to be in unstable interaction. From the above, the deduc- 

tion follows that interaction according to the law of the descending portion of the (I -_rl 
curve can only exist locally in an elastic solid in a state of stable equilibrium deforma- 

tion. It can originate only on portions of adjacent atomic layers under the condition 

that atoms which do not belong to these portions are in a state of stable interaction with 
atoms of the other atomic layers. As will be clarified later, the greatest spacings between 

atomic layers in the equilibrium of elastic solids within which are portions of atomic 
layers interacting according to the law of the descending branch of the U ,- ?l curve 

will, as a rule, essentially exceed the atomic diameter within the limits of such portions. 

Consequently, such portions can be spoken of as slots spoiling the continuity of the solid. 
All the atoms around these slots are in a state of stable interaction according to the law 
of the ascending branch of the U - ?l curve, whereupon the spacing between atoms in 

the neighborhood of the slots is x < D + 2qe, and it can be considered that the con- 

tinuity of the solid is conserved here. 
On the basis of the above, in a theoretical investigation of equilibrium deformations 

of elastic solids, the solid can always be treated as a continuum by using methods of 

elasticity theory. If desired, however, not only the equilibrium modes when all the atoms 
interact according to the law of the ascending (stable) branch of the (J - r\ curve can 

be taken into account, but also the modes when slotlike domains unfilled with atoms 
between whose edges there is interaction according to the law of the descending branch 
of the (r - rl curve, originate in the solid. It is then necessary to admit the possibility 

of the appearance of the new boundaries in the shape of cuts within the solid. The shape 
and size of these cuts are not known in advance. They can be determined from elasticity 
theory equations for appropriate boundary conditions, resulting from (1.1) for Tl > Q, 
being given on the edges of each slot. 

The strict formulation and solution of the described, essentially nonlinear, problem 
are quite difficult, whereupon it is expedient to suggest an approximate approach in the 
first stage of the investigation, which would entrain at least the qualitative aspect of the 
phenomenon being studied. Such an approach can be formulated on the basis of the fol- 

lowing simplifying assumptions : 
1) the relationship between the stresses and strains on the ascending (stable) portion 

of the curve (q < qc), i.e. in the whole domain of the solid where its continuity is 
conserved, is approximated by Hooke’s law ; 

2) the equilibrium equations and formulas connecting the strains and displacements 
are taken in linear form, i.e. the problem is treated as being geometrically linear ; 

3) the descending portion of the u N 11 dependence is approximated by the step curve 
7L 

= = 2 ak80 h - q,) (rl. = rl - 11,) (2.2) 
k=l 

Here 6, (x) is the Heaviside function 

&W= ( ;; 2,:; (2.3) 
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The constants Ck, qk can be selected from considerations of the best approximation 

of(2.2)tothe aNq curve for q > Q. Acceptance of the listed simplifications is 

equivalent to linearization of all the equations of the problem being considered, and 

permits approximate solutions to be obtained for specific problems. 

8. The simplest imaginable modification described by the approxiinate theory is 

obtained if just the first term is kept in (2.2) by putting 

0 = 016, (111 - rlr) (rl* > 0) (3.1) 

It should hence be assumed that 01 = UC, and Q should be determined from the Coil- 

dition 
%r)l = uc91 = Y (3.2) 

thereby demanding that the area of the approximating curve (Fig. 3) be equal to the area 

of the curve (1 1) in the range t], 6 q < 00. This condition is equivalent to the requi- 

Fig. 3 

rement that the approximating dependence yield the 

same value of the surface energy density as (1.1). 

It recalls the linearization principle widely utilized 

in the theory of nonlinear oscillations, which is based 

on equating the work ofnonlinear forces to the work of 

the approximately linear forces replacing them within 

the argument range characteristic for the problem. 

In this most simple formulation, let us consider 

the problem of the equilibrium of an elastic isotropic 

plane subjected to tensile stresses given at infinite 

%/y (5, _+ 00) = (J. 

This problem has the trivial solution 

%, (x7 Y) = uJq/ (21 Y) = 0, U,,(G Y) =a (3.3) 

However, this solution is not unique if the nonlinearity of the connection between the 

stresses and strains according to (1.1) is taken into account. 

Without posing the problem of seeking all nontrivial equilibrium modes of deformation 

of the solid which are possible in this case, let us limit ourselves to an investigation of 

the possibility of the existence of modes for which an infinitely long plane slot perpen- 

dicular to the tension direction, will be formed at an arbitrary point of the solid, i. e. let 

us examine the case investigated by Griffiths r2]. 

It hence turns out to be possible to utilize the already known solution of Leonov and 

Panasiuk [3, 41, who came up with the useful idea of approximating the descending por- 

tions of the (3 - q curve by formulas (3. l), (3.2). 

According to the authors cited 
” 

a,,@, 0) = CT, + v2L-[O-2~arccos~ 
1 

+ 



On the foundations of a theoryof equilibrium cracks in elastic solids 781 

Here 21 = L is the slot length. 1 - lo = A is the width of the portion of the slor 

(at its endpoint), within whose limits there is interaction according to the law (3.1) 
between the edges 

r(z,s,k)=ln~~- 
zk - v(P - a+)@~ - k2) 

- zk + l/(P - +(I* - ka) 
(3.6) 

The y-axis is perpendicular to the slot, and the z-axis is along the slot from the origin 
to the midpoint. 

Formula (3.4) yields the distribution of the normal stress u along the s-axis (for 

( 5 1 > I), and (3. 5) defines the equilibrium mode of the twisting of the slot “edges”. 

The quantities given in these formulas will be (T, uC, E. As regards the length of the 
slot and the width of the interaction portions of the slot edges A they cannot be taken 

arbitrarily. They are determined uniquely if the relationships (3. l), (3.2) are taken into 
account, and which have not been utilized in (3.4), (3.5). But before forming the appro- 

priate equations, it is expedient to simplify the expressions (3.4)-(3.6). which is possible 
if it is taken into account that only cases when 

(3.7) 
are of practical interest. “c 

The first inequality results from the fact that the ultimate tensile strength U,of a lat- 

tice without defects is on the order of the Young’s modulus, as is seen at least from 
(1.2.2). The validity of the second simplification is verified by subsequent computations 
according to which a turns out to be a quantity on the order of the atomic diameter D. 
Because of (3.7). the expressions (3.4), (3.5) can be replaced by the following asympto- 

tic formulas (which are valid in the neighborhood of the slot endpoints) : 

Quantities on the order of A/l, % / 1, E* / 1 , as well as products of these small 
quantities, were discarded successively in comparison to one in the derivation of (3.8). 

(3.9) from(3.4)-(3.6). 
It follows from (3.8) that for 

infinitely large tensile stresses will originate at the slot ends, and for 

(3.10) 

(3.11) 

infinitely large compressive stresses. If it is assumed that neither are admissible, then 

we arrive at the condition 

which is a formulation. for the specific problem under consideration, of the Khristiano- 
vich-Barenblatt postulate [5. 61. according to which solutions with infinite stresses in the 
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neighborhood of the endpoints should be considered physically incorrect in problems of 
the deformation of solids having crack-cuts, and eliminated from consideration 

Somewhat later this postulate will be discussed and rejected. However, it is first expe- 
dient to agree with (3. 12) and to examine the consequences resulting from it. In addi- 

tion to (3. Id), the parameters of the problem should be subject also to the relationship 

v(A,O) = 35 (3.13) 

which follows from (3.9), and formulas (3. l), (3.2) taking into account that vi= Y / UC. 
Eliminating .A from (3,12) and (3.13), we arrive at the equality 

L=zJl=L =I-“r 8 .Tt 52 
(3.14) 

which is identical to the known Griffith formula. 
Therefore, if the postulate of finiteness of the stresses (both tensile and compressive) 

is accepted, then it turns out that a completely definite length of an equilibrium slot 

will correspond to each value of (3. The slot may not be greater than this length since 
infinite tensile stresses could hence occur in the neighborhood of its endpoints, and can- 
not be less than this length since then infinite compressive stresses would originate in 
the neighborhood of its ends. 

It should be noted that the authors of the considered solution [3, 41 consider its appli- 
cation possible even to cracks of length L < Lg. However they must here assume that 
there is no interaction between the slit edges in the portion 1x1 < &, even if 

v (107 0) < Y 1 0, (3.15) 

The fact is that the cited authors treat a slot as a real, previously assigned infinitely 

thin cut in the solid. But the question then arises how can the slot edges diverge in the 

presence of atomic interaction forces ? In order to overcome this difficulty, the existence 
of a seemingly infinitely thin shield, impervious to the interatomic forces, is sometimes 
postulated tacitly and sometimes explicitly in the plane of the cut in the theory of crack- 

cuts. 
Taken as a length in the theory [3. 41 is 21, , and the crack is considered to be 

“shielded” from interaction between edges along this whole length, independently of me 
spacing between them. Hence, condition (3.13) is written as 

v (A, 0) < y 1 ‘Jc (3.16) 

where the critical length of an equilibrium crack L = Lg corresponds to the equality 

sign. 
The treatment proposed above of the crack-cuts as nontrivial equilibrium modes of 

the elastic solids with physically nonlinear properties permits getting rid of the “myth- 

ical” shield which is impervious to atomic interaction forces. 

The origination of cracks in such a treatment is considered as the loss of stability (in 

the large) of the trivial mode of body deformation, i. e. as an effect analogous, say, to 
the snapping phenomenon in shells. In such an approach, the presence of some cut in 
the solid is not required for slot formation, and the need for shielding the interatomic 
forces drops out. The transition of the solid into an equilibrium state with a slot is how- 

ever connected with overcoming the energy barrier proportional to the slot area. In real 
solids, there is hence apparently sufficient local circumstances contributing to the reali- 
zation of the transition from the trivial to the nontrivial equilibrium mode, exactly as 
there are always sufficient reasons in real shells to asslre overcoming the energy barrier 
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standing in the path of snapping dent formation. 

4. Therefore, according to the approximate solution presented above, the length of an 
equilibrium crack of the kind considered is completely definite : L = Lg. The slot 

hence always turns out to be unstable since an arbitrarily small finite change in the 
external loading on the solid o -& AIJ results in the origination of infinite stresses, for- 
bidden by the Khristianovich-Barenblatt principle, in the neighborhood of the ends of 

the slot. The certainty of this principle, at least with respect to tensile stresses, is indu- 

bitable at first glance since the law of the stress-strain relation (1.1) constrains the for- 

mer to the finite quantity 0,. And even the possibility of real solids supporting infinite 
compressive stresses seems to be ccmpletely improbable. 

However,let us show that the solution of elasticity theory problems with infinitely 
large stresses should by far not always be rejected. The fact is that the rupture of solids 
is a discrete process ; it is impossible to separate half an atom from half of another, say, 

while retaining the connection between their two remaining halves. Failure of the con- 

nection in a pair of atoms, i. e. achievement of the limit value of the cohesion force 
T,in some pair of atoms, will be a rupture “quantum”. Since T = Do, the inequality 

on So, (4.1) 
will be the failure condition, where on,is the maximum value of the normal tensile 

stress. However, cases are possible when the gradient of the normal stress in the neigh- 
borhood of its greatest value is so large that it is not possible to neglect the change in 

o,even within the limits of one atomic diameter. 
Then 

(4.2) 

where integration is within a square with side I,,. (Here and henceforth, keeping in mind 

the roughness of the subsequent considerations which rely on the apparatus of linear elas- 

ticity theory, it is meaningless to devote oneself to the peculiarities in the construction 

of atomic lattices. These latter are treated as simple, cubic, loosely packed lattices.) 
In the above-mentioned special cases (4.1) should be replaced by the inequality 

As soon as the reverse inequality 
1 

L)2 o&-J< Qc 

(4.3) 

is satisfied at all points of the solid, the strength of the latter is known to be assured 
since the external forces acting on the solid are now inadequate for the maximum cohe- 

sion to be overcome by at least one pair of atoms. 
However, it does not follow from this that condition (4.3) can be considered the frac- 

ture criterion. It will be the condition for failure of just one element of the quite com- 

plex multiply statically indeterminate system of the atomic lattice. Hence, the inequal- 
ity (4.3). being the necessary fracture criterion, will not generally be sufficient. The 

formulation of a sufficient criterion for brittle fracture should be connected with an esti- 
mation of the carrying capacity of the atomic lattice of the solid subjected to a given 
external loading. 

In practice, the discrete criterion (4.3) differs from the continual criterion (4.1) only 
in the neighborhoods of singular points of the stress field, where the infiniteness of the 

stress, absolutely forbidden by the criterion (4.1). does not, by far, always turn out to 
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contradict the criterion (4.4), which assures the strength 

illustrate this by a most simple example. 

of the atomic lattice. Let us 

5. Let us consider the problem of tension on a plane with a cut by stresses 0, (2, X!I 
& co) = 0 by neglecting interaction between the cur edges here (the Griffith problem). 

We consider the s-axis to coincide with the cut, and take the origin at one of the end- 
points. The normal stress distributionc,,near the end of the crack is determined by the 

known asymptotic formula of Sneddon [7] 

3*=0(1+;T/3 (5.1) 

There results from (5.1) that (Jo -+ CXJ as 5 --f 0 , and therefore, the strength condi- 
tion Q, ,< CS, at the ends of the crack is not satisfied for any crack length L. For the 

particular case under consideration, the discrete criterion (4.4) becomes 

Hence, the strength of the solid is known to be assured if 

By utilizing (1.2), this expression can be reduced to 

L,< 0.74% = OSL, 

(5.2) 

(5.3) 

(5.4) 

where L, is the critical crack length according to Griffith. If not (1.2) but the alterna- 

tive formula of Orowan (1. 5) is used to transform (5.3), we will then have 

L&g=- 1.56L, (5.5) 

Therefore, (1.2) and (1. 5), corresponding to two distinct methods of approximating the 
atomic interaction curve utilized in transforming (5_3),yield a somewhat understated and 
a somewhat exaggerated value of the critical crack length as compared to the result 

(3.14) of A. Griffith. 

A theory of equilibrium cracks, which dispenses with the postulate of finiteness of the 
stresses, will be presented in Sect. 7, in which the considered example will appear as a 

particular case. Then the interrelations between (5.3) and the Griffith formula (3.14) 
will become more explicit, where it turns out that the analysis presented above is not 

rigorous. However, it should be retained in research as one of the steps in an investiga- 
tion which demonstrates most simply that the discrete strength criterion (4.4), applied 

to the Griffith problem, will yield quantitative results similar to those which the men- 

tioned author obtained from energy considerations. 
The following deductions result from the considered illustration. 
a) At points of the solid where the stresses and their gradients are infinite, the stresses 

averaged within the limits of a single atom should be considered the strength characrer- 

istic 
3, = -g s a,,dQ (5.6) 

b) The strength criterion (4.4) when applied to estimate crack stability will yield 
results agreeing with the Griffith energy theory not only qualitatively but also quantita- 
tively. 

c) The existence of singular points in the stress field still does not mean physical 
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incorrectness of the solution. Upon compliance with (4.4) such solutions are admissible. 
Moreover, since the condition (4.4) is only necessary but not sufficient, it will generally 
understate the domain of loadings which will not spoil the strength of the solid. A num- 

ber of authors turned attention to the need for the transition from stresses to interatomic 

forces in estimating the strength of a solid at the ends of a crack. The founder of the 

theory of brittle fracture, Griffith r2], understood this well. Elliot [8] examined a discrete 
strength condition at a crack end in a form different from that elucidated. 

6. In connection with the discussions of the two preceeding sections, a doubt can arise 

as to whether it is admissible to consider spacings on the order of an atomic diameter 
as finite quantities in solutions of problems obtained from the elasticity theory equations, 

and can one count upon obtaining at least qualitatively correct results. 
However, the following reasoning favors this possibility. Real solids which have a dis- 

crete configuration are approximated in continuum mechanics by bodies consisting of 

infinitesimal particles. The stress-strain relationships in a continuous solid are hence 
taken such that when they are averaged within the dimensions of one atom relationships 

are obtained which express the interaction between two atoms. Requiring a rather com- 
mon, but then descriptive expression, it can be said that the discrete interaction between 

atoms seems “to be spread” over the whole volume of the solid. However, this does not 

mean neglecting the size of the atoms. Let us clarify this last sentence by an illustration 

taken from shell theory. In this theory a method is often used to analyze stiffener-rein- 
forced shells which is based on the distribution of the rib stiffness along the intervening 

span. The ribbed shell is hence converted into an anisotropic smooth shell of approxi- 

mately equivalent mechanical properties. The discrete finite-stiffness ribs are hence 

replaced by infinitely close ribs of infinitesimal width. It is quite undestandable that 
this is just a computational method. Its utilization does not mean at all that the size 
of the actual discrete stiffeners or the spacing between them can be neglected in a prac- 

tical application of the results emerging therefrom. Thus, for example, when desiring to 
determine the bending stresses in the stiffeners, the bending moment should be obtained 
by taking values of the change in curvaturealong the considered stiffener from an ana- 
lysis of the fictitious structurally anisotropic shell, and multiplying the curvature by EZ, 
where Z is the moment of inertia of the stiffener. 

It is seen from the illustration given, that methods based on approximate replacement 
of discrete by continuous mechanical systems do not exclude the possibility of obtaining 

information on the stress resultants originating in the elements of the discrete systems. 

Were it otherwise, such methods would be deprived of practical value. The appearance 
of infinite stresses in the solution of some elasticity theory problems indicates that the 
interatomic forces in the atomic lattice in such problems will change rapidly with the 

passage from one pair of atoms to another. Infinite stresses and their gradients will natu- 
rally be obtained at appropriate points when a real discrete lattice is replaced by a con- 
tinuum (i. e. lettig D tend to zero). However, when converting stresses into interatomic 
forces, the latter turn out to be finite, as is seen from the example presented in the pre- 

ceding section. The satisfactory quntitative agreement between the results obtained by 
this means and the Griffith energy theory can be considered as confirmation of the admis- 
sibility of the approach described for the estimation of the strength of brittle solids. 

7. Let us now return to Sect. 3. wherein (3.14) was derived which uniquely defines 
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the length of an equilibrium crack. This formula has been obtained from equalities 
(3.8) (3.9) upon which conditions (3.12) and (3.13) have been imposed. The second 
results from the approximation taken for the law of interatomic coupling on the descend- 
ing branch of the o - ‘1 curve (3. l), (3.2). and the first expresses the requirement of 
finiteness of the stresses at the ends of the crack. This latter (as has been shown above) 

is not absolute, and should be replaced by (4.4), which becomes in the. plane problem 

being considered D 

-$ a xfcs, Cd 
; 

(7.1) 

The critical state of a crack for which the interaction forces between pairs of atoms 
closest to its endpoints reach the limit value J’, corresponds to the equality sign here. 

Let us determine the critical crack length Lk = 211, corresponding to this state. Sub- 
stituting (3.8) into (7.1). and using this formula with the equality sign, we obtain 

2 f 
&s 
--=$~~+(1+.)[i-_$arcsin(~)] 
D 0, 

(a=+) (7.2) 

Taking account of the arbitrariness of condition (3.11). Eq (3.13) will be 

If the following notation is introduced 

L 

(7.3) can be written either as 

or as 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

It is hence seen that Lk > Lg. Furthermore, subtracting (7.5) from (7.2) we find 

p = J&(1 +a)[l- -$arcsin$$] (7.7) 

Here p is a function of only the physical constants of the problem. i. e. is given. 

Hence,(‘l. 7) will be a transcendental equaJion in the single unknown a. 
A graph illustrating the dependence of fi on fi is presented in Fig. 4. On the basis 

of this graph the coefficients h and x in the formulas 

L&$, Lg=xL:t (7.8) 

A= ;P+ $X++$ (7.9) 

4U’ 
x = (1 + uy 

(7.10) 

Fig. 4 
can be calculated by using (7.4.2), (7.5) (7.6). 

These expressions which connect h and x to a, p, 
U, result from (7.5),(7.6). Curves of the dependences of h and x on @ are presented 
in Figs. 5 and 6. It is interesting to note the two limit cases p --+ 0 and p -P CO. In the 
former y = 0, which corresponds to neglecting interir:omic forces on the descending 
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portion of the (T - TJ curve, Hence La = 0. However, Lk turns out to be finite because 
finiteness of the atom size has been taken into account. The solution corresponding to 

this case has already been obtained in Sect. 5. 
The other extreme case (B .--+ oo) corresponds to the assumption that D = 0, i.e. 

the passage to a continuum with a finite value of Y- Then it is natural that LR = L, 
since precisely such a formulation of the problem will correspond to conditions for the 
derivation of the Griffith formula. It follows from the solution constructed that Ahdoes 
not generally agree with L,, where Lk > L, always. But Lk will be the upper bound 
for the length L of the equilibrium slot. The question arises as to what is the lower 

bound for this quantity 

Fig. 5 Fig. 6 

To answer this, let us condider how the equation governing the slot size will change if 

Hence, (7.2) is converted into the inequality 

and (7.3) remains unchanged. Correspondingly, all the formulas (7.5) (7.6) are retained 

since they will be consequences of (7.2) only. Hence, for any (and not only for the cri- 

tical crack length) 
(7.12) 

It hence follows that L > Lg. It therefore turns out that the possible equilibrium 

crack lengths are bounded by the range 

L,fL\(Lk (7.13) 

For fi = 0 (y = 0) this range is transformed into 0 .< L .< Lk, i.e. for solids 
with negligible surface energy, equilibrium cracks of any length less than the critical 

are possible. 
For p -+ CXJ (D = 0) this interval shrinks to a point 

L=Lk=Lg 

i.e. for a continuum (a medium with infinitesimal atoms) the origination of equilibrium 
cracks of just one completely specific length is possible. As is seen from the graph(Fig.6), 

Lgvaries between 0.6Lk < L, < 0.9 Lk in the most probable range of variation 
of fl(O.5<fJ<1.3) corresponding to (1.4) (1.3). 

The result (7.13) is rather unexpected. It follows therefrom that although equilibrium 
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cracks with infinite stresses at the ends can indeed exist, it is however required by all 
means that these stresses be positive. Equilibrium cracks with negative infinite stresses 
do not exist. However, the possibility is not excluded that this result is not final, as a 
more accurate analysis will extend the interval (7.13) somewhat on the left side, 

The fact is that according to the solution elucidated, it turns out that for L < L, 

the crack edges begin to intersect near its endpoints, which is physically absurd. This is 

precisely why this case is indeed forbidden by the constructed solution. However, the 

noted absurdity is inherent not in the problem under consideration, but only in the ideal- 

ized formulation m which it has been examined. 
Indeed, according to the conception expounded, the crack is a cavity between two rows 

of atoms within whose limits the spacing between the atoms exceeds D f 21~~. The 
displacements v (5, 0) governing the shape of this cavity were defined as 

2, (2, 0) = sJ - qC = 9J* 

But in such a definition negative values of 2, (2, 0) are not excluded at all. and do 
not contradict the physical meaning. 

Their appearance means only that the atomic rows approach to a distance q < D -j- 
f 2~~ on appropriate portions of the whole length, i. e. that the atoms go from interac- 
tion according to the law of the descending portion of the o - q curve over to inter- 

action according to the law of the ascending portion of the curve. 
The atomic diameter in the solution presented above, which is considered finite in the 

range 1 XI < 0.5L ( since a curve of the atomic interaction in the form (1.1) is used 
here which connects the stresses with the remaining atom displacements), is taken equal 

to zero in the interval 1 x 1 > 0.5L ( . since the continuum model is used here). This 
latter indeed results in the fact that the physically admissible case is converted into an 
absurdity. Some doubt hence arises about the lower bound of the inequality (7.13). 

As regards its upper bound, some doubt can also be expressed here on the basis of the 
fact that the fracture criterion (4.3), which was utilized to define this boundary, will 
only be necessary but not generally sufficient. However, in the problem under considera- 

tion this criterion is apparently not only necessary but also sufficient. 
Indeed, if the interatomic force for two pairs of atoms closest to the slot endpoints 

reaches the limit value T,,then this means substantially that the slot length is magnified 
by 20. But then the next two pairs of atoms turn out to be in the same situation as were 

the two preceding pairs of atoms, and therefore, the interatomic forces for them should 
reach the limit value T,. A slot for which .L > ,& k will thereby be broadened, although 
fracture of the solid will not yet occur. It should hence be considered that the value 
L = Lk corresponds to exhaustion of the carrying capacity of a body having a slot, i.e. 

the upper bound of (7.13) is not needed in a correction in principle. 

It is understood that the quantitative results emerging from the solution presented 
should be considered only as a first approximation. It is desireable to refine them for a 
more accurate investigation of the situation in the neighborhood of the slot ends. 

8. According to the theory elucidated, some interval of values of L corresponds to 
each value of the stress o at infinity, where both the upper and lower bounds of this in- 

terval decrease as (5 increases. This appears paradoxical, since at first glance it hence 
follows that even longer and more dangerous cracks should originate in solids, the smal- 
ler the loading on the body. Xowever. it should not be forgotten that the greater the 
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length of the equilibrium crack and the smaller the o the greater will be the energy 

barrier which should be overcome for the appearance of a slot, and the smaller will be 
the probability of the origin of conditions at which this barrier (whose magnitude de- 
creases as 1 / f14 as o increases since it is proportional to the crack area) will turn out 
to be surmountable.Thermal fluctuations,forexample,will be oneofthe possible mecha- 

nisms of passage through the energy barrier. It is clear that the appearance of fluctua- 

tions in a unilateral direction in some volume of the body will be less and less probable 
the greater the volume within whose limits it will originate. Because of the above, it is 

evident that the formation of slots in elastic solids is possible only for sufficiently high 

values of 0 i.e. for sufficiently small Lli. 

As an illustration yielding a representation bf the order of magnitude, let us present 
values of La, Lk and 2[im,, D-' for $ = 1 and several diverse values of d/oc 

2u max ~ = 23, 
D 

9.30.103D<L< 1.15.10pD (e=O.Oi) 

2u 
9 =2.8, 235D<L<28OD (%=0.05) 

2u max 
- = 2.3, 

D 
93D<L<l15D (,+=O.l) 

e 
From these numbers it follows that the lengths of equilibrium cracks for stresses on the 

order of the yield point or strength of real solids turn out to be less than the grain size of 

polycrystals and more often commensurate with the size of blocks or spacings between 
dislocations. The maximum crack width hence varies between 30 and 350. The con- 

sidered theory is thereby by no means a theory of microscopic cracks. It describes the 

mechanism of crack generation and propagation in polycristal grains. From it follows 
not only the possibility but also the naturalness of the formation of slots of microscopic 
and submicroscopic size in solids, even if the crystal lattices of these solids are defect- 

free. The presence of defects (vacancies, interstitial atoms, dislocations) exerts a double 
influence on propagation of slots of the kind considered. On one hand, the presence of 

defects can contribute to surmounting the energy barriers inhibiting crack formations, 
but on the other hand, defects and their clusters produce energy barriers in the path of 
the cracks being propagated. In particular, the grain boundaries and other clusters of 

retarded dislocations will be such barriers. Consequently, the regularities of microcrack 
propagation in real solids is more complex than those resulting from the examined the- 

ory, which solve the problem in an idealized formulation. 

9. The perceptible value of the elucidated theory is in interpreting the brittle frac- 
ture mechanism as the loss of stability (in the large) of trivial equilibrium modes of the 
atomic lattices. The crack is hence considered not as a defect existing beforehand in 

the lattice (as has been assumed up to now), but as a nontrivial equilibrium mode of the 
deformation of an elastic solid, which becomes possible only in the presence of a loading 
stretching the solid. Thermal fluctuations and local imperfections, which always exist 
in atomic lattices, produce conditions under which energy barriers inhibiting the reali- 
zation of such nontrivial defoemation modes are surmounted. In principle, equilibrium 

crack of a different kind are possible. including the infinitely long Griffith crack con- 
sidered above, a circular crack, etc. However, the probabilities of their origination are 
not the same by far. Thus, for example, the energy barrier which must be surmounted 
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for the formation of a Griffith crack, cutting through a solid, is very great (infinite if we 
speak of an infinitely large solid). Therefore, the origination of such cracks is not realis- 
tic, and should be considered as a classical example convenient for theoretical investi- 
gation, which permits a study of the qualitative aspect of the phenomenon. The concept 

proposed to distinguish cracks from the viewpoint of the probability of their formation 

discloses prospects of a statistical approach to the study of brittle fracture on the basis 
of an investigation of the physical conditions needed to surmount the appropriate energy 

barriers. The fact that the problem of equilibrium cracks, cuts, is nonlinear (according 

to the criterion of assigning boundary conditions on the contour whose size is not ‘known 

in advance) has been voiced earlier. 

However the physical nature of this nonlinearity has not been clear. On page 4 in [s] 
it is attributed to geometric factors. As has been shown above, the nonlinearity of atomic 
interaction actually plays the main role here, and the geometric nonlinearity of the prob- 

lem can be neglected in a first approximation. 
The second viewpoint in principle, propounded above, is the approach to brittle frac- 

ture as to a discrete process (the process of separation of atoms, in whose study the atomic 

diameter must be considered a finite quantity). Hence, a need arises to utilize the brittle 

strength criterion in the neighborhood of singular points of the stress field in the form 

(4.3) rather than the form (4.1). The latter is equivalent to rejecting the postulate of 
finiteness of the stress in the neighborhood of the crack ends. Hence, a finite range for 
the width (length) of a stable equilibrium crack of given specific form corresponds to 
each value of the tensile loading on the solid. When the postulate of finite stresses is 

included among the conditions of the problem, it is found that stable equilibrium cracks 

do not generally exist (if there are no external forces applied to the crack edges). 
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